Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 23(1): 69, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443984

RESUMO

BACKGROUND: There are several indications that pesticides used in agriculture contribute to the emergence and spread of resistance of mosquitoes to vector control insecticides. However, the impact of such an indirect selection pressure has rarely been quantified and the molecular mechanisms involved are still poorly characterized. In this context, experimental selection with different agrochemical mixtures was conducted in Anopheles gambiae. The multi-generational impact of agrochemicals on insecticide resistance was evaluated by phenotypic and molecular approaches. METHODS: Mosquito larvae were selected for 30 generations with three different agrochemical mixtures containing (i) insecticides, (ii) non-insecticides compounds, and (iii) both insecticide and non-insecticide compounds. Every five generations, the resistance of adults to deltamethrin and bendiocarb was monitored using bioassays. The frequencies of the kdr (L995F) and ace1 (G119S) target-site mutations were monitored every 10 generations. RNAseq was performed on all lines at generation 30 in order to identify gene transcription level variations and polymorphisms associated with each selection regime. RESULTS: Larval selection with agrochemical mixtures did not affect bendiocarb resistance and did not select for ace1 mutation. Contrastingly, an increased deltamethrin resistance was observed in the three selected lines. Such increased resistance was not majorly associated with the presence of kdr L995F mutation in selected lines. RNA-seq identified 63 candidate resistance genes over-transcribed in at least one selected line. These include genes coding for detoxification enzymes or cuticular proteins previously associated with insecticide resistance, and other genes potentially associated with chemical stress response. Combining an allele frequency filtering with a Bayesian FST-based genome scan allowed to identify genes under selection across multiple genomic loci, supporting a multigenic adaptive response to agrochemical mixtures. CONCLUSION: This study supports the role of agrochemical contaminants as a significant larval selection pressure favouring insecticide resistance in malaria vectors. Such selection pressures likely impact kdr mutations and detoxification enzymes, but also more generalist mechanisms such as cuticle resistance, which could potentially lead to cross-tolerance to unrelated insecticide compounds. Such indirect effect of global landscape pollution on mosquito resistance to public health insecticides deserves further attention since it can affect the nature and dynamics of resistance alleles circulating in malaria vectors and impact the efficacy of control vector strategies.


Assuntos
Anopheles , Poluentes Ambientais , Inseticidas , Malária , Nitrilas , Fenilcarbamatos , Piretrinas , Animais , Anopheles/genética , Agroquímicos , Inseticidas/farmacologia , Teorema de Bayes , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Perfilação da Expressão Gênica
2.
Malar J ; 22(1): 256, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667239

RESUMO

BACKGROUND: The widespread use of pyrethroid insecticides in Africa has led to the development of strong resistance in Anopheles mosquitoes. Introducing new active ingredients can contribute to overcome this phenomenon and ensure the effectiveness of vector control strategies. Transfluthrin is a polyfluorinated pyrethroid whose structural conformation was thought to prevent its metabolism by cytochrome P450 monooxygenases in malaria vectors, thus representing a potential alternative for managing P450-mediated resistance occurring in the field. In this study, a controlled selection was used to compare the dynamics of resistance between transfluthrin and the widely used pyrethroid deltamethrin in the mosquito Anopheles gambiae. Then, the associated molecular mechanisms were investigated using target-site mutation genotyping and RNA-seq. METHODS: A field-derived line of An. gambiae carrying resistance alleles at low frequencies was used as starting material for a controlled selection experiment. Adult females were selected across 33 generations with deltamethrin or transfluthrin, resulting in three distinct lines: the Delta-R line (selected with deltamethrin), the Transflu-R line (selected with transfluthrin) and the Tiassale-S line (maintained without selection). Deltamethrin and transfluthrin resistance levels were monitored in each selected line throughout the selection process, as well as the frequency of the L1014F kdr mutation. At generation 17, cross-resistance to other public health insecticides was investigated and transcriptomes were sequenced to compare gene transcription variations and polymorphisms associated with adaptation to each insecticide. RESULTS: A rapid increase in resistance to deltamethrin and transfluthrin was observed throughout the selection process in each selected line in association with an increased frequency of the L1014F kdr mutation. Transcriptomic data support a broader response to transfluthrin selection as compared to deltamethrin selection. For instance, multiple detoxification enzymes and cuticle proteins were specifically over-transcribed in the Transflu-R line including the known pyrethroid metabolizers CYP6M2, CYP9K1 and CYP6AA1 together with other genes previously associated with resistance in An. gambiae. CONCLUSION: This study confirms that recurrent exposure of adult mosquitoes to pyrethroids in a public health context can rapidly select for various resistance mechanisms. In particular, it indicates that in addition to target site mutations, the polyfluorinated pyrethroid transfluthrin can select for a broad metabolic response, which includes some P450s previously associated to resistance to classical pyrethroids. This unexpected finding highlights the need for an in-depth study on the adaptive response of mosquitoes to newly introduced active ingredients in order to effectively guide and support decision-making programmes in malaria control.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Feminino , Animais , Transcriptoma , Anopheles/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Mosquitos Vetores/genética , Piretrinas/farmacologia
3.
Aquat Toxicol ; 255: 106396, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36657268

RESUMO

The end of the 20th century was characterised by rapid modifications of ecosystem functioning under different pressures (such as eutrophication and toxic pollution). Increasing temperatures in the context of global warming could have indirect consequences, such as increased bioavailability of hydrophobic organic pollutants amongst aquatic species. According to the "pace-of-life syndrome" (POLS) theory, these stressors could lead to covariations in many life traits. Lake Bourget is the largest natural lake in France and has been highly polluted from the fifties to the eighties both with a high load of nutrients (wastewater discharge) and polychlorinated biphenyls (PCBs) (industrial effluent discharge). Despite improvements in water quality since the 21st century, PCB levels are still higher than the United States Environmental Protection Agency cut-off for wildlife protection. The population of Arctic char, a cold stenothermic salmonid, has remained low in Lake Bourget for the last ten years despite restocking efforts and complete re-oligotrophication. We hypothesised that PCB pollution can affect the Arctic char population and that the increase in water temperature could magnify the effects of PCB. Thus, this study aimed to investigate the effects of maternal PCB contamination on offspring using a multiparametric and multiscale approach. Female Arctic char were contaminated with PCB before spawning, and each fertilised spawn was incubated at two temperatures (4 and 8.5 °C). The results showed that co-exposure to increased temperature and maternal PCB contamination influenced biodemographic, physiological, and behavioural parameters. The effects were highly dependant on the developmental stage. Based on the POLS theory, a continuum of life traits that may reflect potential physiological and behavioural modifications in response to these concurrent stressors is highlighted.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Feminino , Bifenilos Policlorados/toxicidade , Ecossistema , Aquecimento Global , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental/métodos
4.
Environ Pollut ; 311: 120009, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998770

RESUMO

A pre-diabetes syndrome induced by endocrine disruptors (ED) was recently demonstrated in the model amphibian Silurana (Xenopus) tropicalis and was suggested to be a potential cause of amphibian population decline. However, such effects have not been found in wild type frogs exposed to ED and the capacity of amphibians to physiologically develop diabetes under natural conditions has not been confirmed. This study showed that a high fat diet (HFD) model displaying the important characteristics of mammal HFD models including glucose intolerance, insulin resistance and nonalcoholic fatty liver disease (NAFLD) can be developed with green frogs (Pelophylax spp.). Wild green frogs exposed to 10 µg L-1 benzo [a]pyrene (BaP) for 18 h also displayed several characteristics of the pre-diabetes phenotype previously observed in Xenopus including glucose intolerance, gluconeogenesis activation and insulin resistance. The study results confirmed that metabolic disorders induced by ED in wild green frogs are typical of the pre-diabetes phenotype and could serve as a starting point for field studies to determine the role of ED in the decline of amphibian populations. From an environmental perspective, the response of wild green frogs to different ED (10 µg L-1) suggests that a simple glucose-tolerance test could be used on wild anurans to identify bodies of water polluted with metabolic disruptors that could affect species fitness.


Assuntos
Disruptores Endócrinos , Intolerância à Glucose , Resistência à Insulina , Síndrome Metabólica , Estado Pré-Diabético , Rana clamitans , Animais , Benzo(a)pireno , Dieta Hiperlipídica/efeitos adversos , Disruptores Endócrinos/toxicidade , Mamíferos , Síndrome Metabólica/induzido quimicamente , Ranidae
5.
Aquat Toxicol ; 248: 106181, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35504174

RESUMO

The heavy use of pesticides in agricultural areas often leads to the contamination of nearby mosquito larvae breeding sites. Exposure to complex mixtures of agrochemicals can affect the insecticide sensitivity of mosquito larvae. Our study objective was to determine whether agrochemical residues in Anopheline larval breeding sites can affect the tolerance of adults to commonly used adulticides. We focussed on Fludora® Fusion, a vector control insecticide formulation combining two insecticides (deltamethrin and clothianidin) with different modes of action. An. gambiae larvae were exposed to a sub-lethal dose of a mixture of agrochemical pesticides used in a highly active agricultural area on the Ivory Coast. Comparative bioassays with Fludora Fusion mixture and its two insecticide components (deltamethrin and clothianidin) were carried out between adult mosquitoes exposed or not to the agrochemicals at the larval stage. A transcriptomic analysis using RNA sequencing was then performed on larvae and adults to study the molecular mechanisms underlying the phenotypic changes observed. Bioassays revealed a significantly increased tolerance of adult females to clothianidin (2.5-fold) and Fludora Fusion mixture (2.2-fold) following larval exposure to agrochemicals. Significantly increased tolerance to deltamethrin was not observed suggesting that insecticide exposure affects the adult efficacy of the Fludora Fusion mixture mainly through mechanisms acting on clothianidin. Transcriptomic analysis revealed the potential of agrochemicals to induce various resistance mechanisms including cuticle proteins, detoxification action and altered insecticide sequestration. These results suggest that although the Fludora Fusion mixture is effective for adult vector control, its efficacy may be locally affected by the ecological context. The present study also suggests that, although the complex interactions between the use of agrochemicals and vector control insecticides are difficult to decipher in the field, they still must be considered in the context of insecticide resistance management programmes.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Poluentes Químicos da Água , Agroquímicos/farmacologia , Animais , Anopheles/genética , Feminino , Resistência a Inseticidas/genética , Inseticidas/química , Larva , Controle de Mosquitos/métodos , Mosquitos Vetores , Piretrinas/química , Piretrinas/toxicidade , Poluentes Químicos da Água/toxicidade
6.
Environ Pollut ; 292(Pt B): 118418, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34737028

RESUMO

Animals must partition limited resources between their own growth and subsequent reproduction. Endocrine disruptors (ED) may cause maternal metabolic disorders that decrease successful reproduction and might be responsible for multi- and transgenerational effects in amphibians. We found that the frog Silurana (Xenopus) tropicalis, exposed to environmentally relevant concentrations of benzo[a]pyrene and triclosan throughout its life cycle, produced F1 females with delayed sexual maturity and decreased size and weight. These F1 females displayed a marked metabolic syndrome associated with decreased fasting plasma cholesterol and triglyceride concentrations and decreased gonadal development. F1 females from F0 exposed animals also had decreased reproductive investment highlighted by a decrease of oocyte lipid reserves associated with significant F2-tadpole mortality. F2 females from F0 exposed animals also displayed a marked metabolic syndrome but were able to correctly direct liver lipid metabolism to the constitution of fat bodies and oocyte yolk stores. In addition, the F2 females produced progeny that had normal mortality levels at 5 days post hatching compared to the controls suggesting a good reproductive investment. Our data confirmed that these ED, at concentrations often found in natural ponds, can induce multi- and transgenerational metabolic disorders in the progeny of amphibians that are not directly exposed. We present a hypothesis to explain the transmission of the metabolic syndrome across generations through modification of egg reserves. However, when high mortality occurred at the tadpole stage, surviving females were able to cope with metabolic costs and produce viable progeny through sufficient investment in the contents of oocyte reserves.


Assuntos
Doenças Metabólicas , Triclosan , Animais , Benzo(a)pireno/toxicidade , Feminino , Doenças Metabólicas/induzido quimicamente , Reprodução , Triclosan/toxicidade , Xenopus laevis
7.
Environ Res ; 204(Pt A): 111904, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34418449

RESUMO

Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.


Assuntos
Disruptores Endócrinos , Animais , Animais Selvagens , Bioensaio , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Humanos , Obesidade
8.
Environ Res ; 204(Pt B): 112063, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562476

RESUMO

A wide range of chemicals have been identified as endocrine disrupting chemicals (EDCs) in vertebrate species. Most studies of EDCs have focused on exposure of both male and female adults to these chemicals; however, there is clear evidence that EDCs have dramatic effects when mature or developing gametes are exposed, and consequently are associated with in multigenerational and transgenerational effects. Several publications have reviewed such actions of EDCs in subgroups of species, e.g., fish or rodents. In this review, we take a holistic approach synthesizing knowledge of the effects of EDCs across vertebrate species, including fish, anurans, birds, and mammals, and discuss the potential mechanism(s) mediating such multi- and transgenerational effects. We also propose a series of recommendations aimed at moving the field forward in a structured and coherent manner.


Assuntos
Disruptores Endócrinos , Animais , Aves , Disruptores Endócrinos/toxicidade , Feminino , Peixes , Masculino , Mamíferos
9.
Sci Rep ; 11(1): 19501, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593941

RESUMO

The introduction of neonicotinoids for managing insecticide resistance in mosquitoes is of high interest as they interact with a biochemical target not previously used in public health. In this concern, Bayer developed a combination of the neonicotinoid clothianidin and the pyrethroid deltamethrin (brand name Fludora Fusion) as a new vector control tool. Although this combination proved to be efficient against pyrethroid-resistant mosquitoes, its ability to prevent the selection of pyrethroid and neonicotinoid resistance alleles was not investigated. In this context, the objective of this work was to study the dynamics and the molecular mechanisms of resistance of An. gambiae to the separated or combined components of this combination. A field-derived An. gambiae line carrying resistance alleles to multiple insecticides at low frequencies was used as a starting for 33 successive generations of controlled selection. Resistance levels to each insecticide and target site mutation frequencies were monitored throughout the selection process. Cross resistance to other public health insecticides were also investigated. RNA-seq was used to compare gene transcription variations and polymorphisms across all lines. This study confirmed the potential of this insecticide combination to impair the selection of resistance as compared to its two separated components. Deltamethrin selection led to the rapid enrichment of the kdr L1014F target-site mutation. Clothianidin selection led to the over-transcription of multiple cytochrome P450s including some showing high homology with those conferring neonicotinoid resistance in other insects. A strong selection signature associated with clothianidin selection was also observed on a P450 gene cluster previously associated with resistance. Within this cluster, the gene CYP6M1 showed the highest selection signature together with a transcription profile supporting a role in clothianidin resistance. Modelling the impact of point mutations selected by clothianidin on CYP6M1 protein structure showed that selection retained a protein variant with a modified active site potentially enhancing clothianidin metabolism. In the context of the recent deployment of neonicotinoids for mosquito control and their frequent usage in agriculture, the present study highlights the benefit of combining them with other insecticides for preventing the selection of resistance and sustaining vector control activities.


Assuntos
Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Neonicotinoides/farmacologia , Piretrinas/farmacologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Inseticidas/química , Malária/transmissão , Modelos Moleculares , Conformação Molecular , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Mutação , Neonicotinoides/química , Testes de Sensibilidade Parasitária , Polimorfismo Genético , Ligação Proteica , Piretrinas/química , Relação Estrutura-Atividade , Transcrição Gênica
10.
Aquat Toxicol ; 236: 105860, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34015756

RESUMO

Resistance to chemical insecticides including pyrethroids, the main insecticide class used against mosquitoes, has re-kindled interest in the use of neonicotinoids. In this context, the present study aimed to characterize the molecular basis of neonicotinoid resistance in the mosquito Aedes aegypti. Resistance mechanisms were studied by combining transcriptomic and genomic data obtained from a laboratory strain selected at the larval stage after 30 generations of exposure to imidacloprid (Imida-R line). After thirty generations of selection, larvae of the Imida-R line showed an 8-fold increased resistance to imidacloprid and a significant cross-tolerance to the pyrethroids permethrin and deltamethrin. Cross-resistance to pyrethroids was only observed in adults when larvae were previously exposed to imidacloprid suggesting a low but inducible expression of resistance alleles at the adult stage. Resistance of the Imida-R line was associated with a slower larval development time in females. Multiple detoxification enzymes were over-transcribed in larvae in association with resistance including the P450s CYP6BB2, CYP9M9 and CYP6M11 previously associated with pyrethroid resistance. Some of them together with their redox partner NADPH P450 reductase were also affected by non-synonymous mutations associated with resistance. Combining genomic and transcriptomic data allowed identifying promoter variations associated with the up-regulation of CYP6BB2 in the resistant line. Overall, these data confirm the key role of P450s in neonicotinoid resistance in Ae. aegypti and their potential to confer cross-resistance to pyrethroids, raising concerns about the use of neonicotinoids for resistance management in this mosquito species.


Assuntos
Resistência a Inseticidas/fisiologia , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Aedes , Animais , Feminino , Resistência a Inseticidas/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Larva/metabolismo , Permetrina , Piretrinas/metabolismo , Transcriptoma/efeitos dos fármacos
11.
Environ Pollut ; 269: 116109, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33234375

RESUMO

Metabolic disorders induced by endocrine disruptors (ED) may contribute to amphibian population declines but no transgenerational studies have evaluated this hypothesis. Here we show that Xenopus tropicalis, exposed from the tadpole stage, to the ED benzo[a]pyrene (BaP, 50 ng.L-1) produced F2 progeny with delayed metamorphosis and sexual maturity. At the adult stage, F2-BaP females displayed fatty liver with inflammation, tissue disorganization and metabolomic and transcriptomic signatures typical of nonalcoholic steato-hepatitis (NASH). This phenotype, similar to that observed in F0 and F1 females, was accompanied by a pancreatic insulin secretory defect. Metabolic disrupted F2-BaP females laid eggs with metabolite contents significantly different from the control and these eggs did not produce viable progeny. This study demonstrated that an ED can induce transgenerational disruption of metabolism and population collapse in amphibians under laboratory conditions. These results show that ED benzo[a]pyrene can impact metabolism over multiple generations and support epidemiological studies implicating environmental EDs in metabolic diseases in humans.


Assuntos
Disruptores Endócrinos , Doenças Metabólicas , Animais , Benzo(a)pireno/toxicidade , Feminino , Humanos , Doenças Metabólicas/induzido quimicamente , Reprodução , Xenopus
12.
Mol Cell Endocrinol ; 513: 110861, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450283

RESUMO

Concern over global amphibian declines and possible links to agrochemical use has led to research on the endocrine disrupting actions of agrochemicals, such as fertilizers, fungicides, insecticides, acaricides, herbicides, metals, and mixtures. Amphibians, like other species, have to partition resources for body maintenance, growth, and reproduction. Recent studies suggest that metabolic impairments induced by endocrine disrupting chemicals, and more particularly agrichemicals, may disrupt physiological constraints associated with these limited resources and could cause deleterious effects on growth and reproduction. Metabolic disruption has hardly been considered for amphibian species following agrichemical exposure. As for metamorphosis, the key thyroid hormone-dependent developmental phase for amphibians, it can either be advanced or delayed by agrichemicals with consequences for juvenile and adult health and survival. While numerous agrichemicals affect anuran sexual development, including sex reversal and intersex in several species, little is known about the mechanisms involved in dysregulation of the sex differentiation processes. Adult anurans display stereotypical male mating calls and female phonotaxis responses leading to successful amplexus and spawning. These are hormone-dependent behaviours at the foundation of reproductive success. Therefore, male vocalizations are highly ecologically-relevant and may be a non-invasive low-cost method for the assessment of endocrine disruption at the population level. While it is clear that agrochemicals disrupt multiple endocrine systems in frogs, very little has been uncovered regarding the molecular and cellular mechanisms at the basis of these actions. This is surprising, given the importance of the frog models to our deep understanding of developmental biology and thyroid hormone action to understand human health. Several agrochemicals were found to have multiple endocrine effects at once (e.g., targeting both the thyroid and gonadal axes); therefore, the assessment of agrochemicals that alter cross-talk between hormonal systems must be further addressed. Given the diversity of life-history traits in Anura, Caudata, and the Gymnophiona, it is essential that studies on endocrine disruption expand to include the lesser known taxa. Research under ecologically-relevant conditions will also be paramount. Closer collaboration between molecular and cellular endocrinologists and ecotoxicologists and ecologists is thus recommended.


Assuntos
Agroquímicos/farmacologia , Anfíbios/fisiologia , Disruptores Endócrinos/farmacologia , Sistema Endócrino/efeitos dos fármacos , Animais , Sistema Endócrino/fisiologia , Feminino , Masculino , Metamorfose Biológica/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Diferenciação Sexual/efeitos dos fármacos , Desenvolvimento Sexual/efeitos dos fármacos
13.
Evol Appl ; 13(2): 303-317, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993078

RESUMO

In addition to combating vector-borne diseases, studying the adaptation of mosquitoes to insecticides provides a remarkable example of evolution-in-action driving the selection of complex phenotypes. Actually, most resistant mosquito populations show multi-resistance phenotypes as a consequence of the variety of insecticides employed and of the complexity of selected resistance mechanisms. Such complexity makes the identification of alleles conferring resistance to specific insecticides challenging and prevents the development of molecular assays to track them in the field. Here we showed that combining simple genetic crosses with pool targeted DNA-seq can enhance the specificity of resistance allele's detection while maintaining experimental work and sequencing effort at reasonable levels. A multi-resistant population of the mosquito Aedes aegypti was exposed to three distinct insecticides (deltamethrin, bendiocarb and fenitrothion), and survivors to each insecticide were crossed with a susceptible strain to generate three distinct lines. F2 individuals from each line were then segregated based on their survival to two insecticide doses. Hundreds of genes covering all detoxifying enzymes and insecticide targets together with more than 7,000 intergenic regions equally spread over mosquito genome were sequenced from pools of F0 and F2 individuals unexposed or surviving insecticide. Differential coverage analysis identified 39 detoxification enzymes showing an increased gene copy number in association with resistance. Combining an allele frequency filtering approach with a Bayesian F ST-based genome scan identified multiple genomic regions showing strong selection signatures together with 50 nonsynonymous variations associated with resistance. This study provides a simple and cost-effective approach to improve the specificity of resistance allele's detection in multi-resistant populations while reducing false positives frequently arising when comparing populations showing divergent genetic backgrounds. The identification of novel DNA resistance markers opens new opportunities for improving the tracking of insecticide resistance in the field.

14.
Sci Total Environ ; 689: 149-159, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271984

RESUMO

Numerous studies suggest that amphibians are highly sensitive to endocrine disruptors (ED) but their precise role in population decline remains unknown. This study shows that frogs exposed to a mixture of ED throughout their life cycle, at environmentally relevant concentrations, developed an unexpected metabolic syndrome. Female Silurana (Xenopus) tropicalis exposed to a mixture of benzo[a]pyrene and triclosan (50 ng·L-1 each) from the tadpole stage developed liver steatosis and transcriptomic signature associated with glucose intolerance syndrome, and pancreatic insulin hyper secretion typical of pre-diabetes. These metabolic disorders were associated with delayed metamorphosis and developmental mortality in their progeny, both of which have been linked to reduced adult recruitment and reproductive success. Indeed, F1 females were smaller and lighter and presented reduced reproductive capacities, demonstrating a reduced fitness of ED-exposed Xenopus. Our results confirm that amphibians are highly sensitive to ED even at concentrations considered to be safe for other animals. This study demonstrates that ED might be considered as direct contributing factors to amphibian population decline, due to their disruption of energetic metabolism.


Assuntos
Benzo(a)pireno/toxicidade , Disruptores Endócrinos/toxicidade , Doenças Metabólicas/veterinária , Metamorfose Biológica/efeitos dos fármacos , Triclosan/toxicidade , Xenopus/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Fígado/efeitos dos fármacos , Fígado/fisiologia , Fígado/fisiopatologia , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/metabolismo , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/metabolismo , Síndrome Metabólica/veterinária , Reprodução/efeitos dos fármacos , Transcriptoma
15.
Environ Sci Technol ; 52(14): 7937-7950, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29874051

RESUMO

The anti-inflammatory ibuprofen is a ubiquitous surface water contaminant. However, the chronic impact of this pharmaceutical on aquatic invertebrate populations remains poorly understood. In model insect Aedes aegypti, we investigated the intergenerational consequences of parental chronic exposure to an environmentally relevant concentration of ibuprofen. While exposed individuals did not show any phenotypic changes, their progeny showed accelerated development and an increased tolerance to starvation. In order to understand the mechanistic processes underpinning the direct and intergenerational impacts of ibuprofen, we combined transcriptomic, metabolomics, and hormone kinetics studies at several life stages in exposed individuals and their progeny. This integrative approach revealed moderate transcriptional changes in exposed larvae consistent with the pharmacological mode of action of ibuprofen. Parental exposure led to lower levels of several polar metabolites in progeny eggs and to major transcriptional changes in the following larval stage. These transcriptional changes, most likely driven by changes in the expression of numerous transcription factors and epigenetic regulators, led to ecdysone signaling and stress response potentiation. Overall, the present study illustrates the complexity of the molecular basis of the intergenerational pollutant response in insects and the importance of considering the entire life cycle of exposed organisms and of their progeny in order to fully understand the mode of action of pollutants and their impact on ecosystems.


Assuntos
Aedes , Animais , Ecossistema , Ibuprofeno , Larva , Estágios do Ciclo de Vida
16.
Proc Natl Acad Sci U S A ; 115(19): E4416-E4425, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686083

RESUMO

Despite numerous studies suggesting that amphibians are highly sensitive to endocrine disruptors (EDs), both their role in the decline of populations and the underlying mechanisms remain unclear. This study showed that frogs exposed throughout their life cycle to ED concentrations low enough to be considered safe for drinking water, developed a prediabetes phenotype and, more commonly, a metabolic syndrome. Female Xenopus tropicalis exposed from tadpole stage to benzo(a)pyrene or triclosan at concentrations of 50 ng⋅L-1 displayed glucose intolerance syndrome, liver steatosis, liver mitochondrial dysfunction, liver transcriptomic signature, and pancreatic insulin hypersecretion, all typical of a prediabetes state. This metabolic syndrome led to progeny whose metamorphosis was delayed and occurred while the individuals were both smaller and lighter, all factors that have been linked to reduced adult recruitment and likelihood of reproduction. We found that F1 animals did indeed have reduced reproductive success, demonstrating a lower fitness in ED-exposed Xenopus Moreover, after 1 year of depuration, Xenopus that had been exposed to benzo(a)pyrene still displayed hepatic disorders and a marked insulin secretory defect resulting in glucose intolerance. Our results demonstrate that amphibians are highly sensitive to EDs at concentrations well below the thresholds reported to induce stress in other vertebrates. This study introduces EDs as a possible key contributing factor to amphibian population decline through metabolism disruption. Overall, our results show that EDs cause metabolic disorders, which is in agreement with epidemiological studies suggesting that environmental EDs might be one of the principal causes of metabolic disease in humans.


Assuntos
Benzo(a)pireno/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Extinção Biológica , Intolerância à Glucose , Triclosan/toxicidade , Xenopus/metabolismo , Animais , Feminino , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/metabolismo , Larva/metabolismo , Metamorfose Biológica/efeitos dos fármacos
17.
PLoS Negl Trop Dis ; 11(4): e0005526, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28379969

RESUMO

BACKGROUND: The capacity of Aedes mosquitoes to resist chemical insecticides threatens the control of major arbovirus diseases worldwide. Until alternative control tools are widely deployed, monitoring insecticide resistance levels and identifying resistance mechanisms in field mosquito populations is crucial for implementing appropriate management strategies. Metabolic resistance to pyrethroids is common in Aedes aegypti but the monitoring of the dynamics of resistant alleles is impeded by the lack of robust genomic markers. METHODOLOGY/PRINCIPAL FINDINGS: In an attempt to identify the genomic bases of metabolic resistance to deltamethrin, multiple resistant and susceptible populations originating from various continents were compared using both RNA-seq and a targeted DNA-seq approach focused on the upstream regions of detoxification genes. Multiple detoxification enzymes were over transcribed in resistant populations, frequently associated with an increase in their gene copy number. Targeted sequencing identified potential promoter variations associated with their over transcription. Non-synonymous variations affecting detoxification enzymes were also identified in resistant populations. CONCLUSION /SIGNIFICANCE: This study not only confirmed the role of gene copy number variations as a frequent cause of the over expression of detoxification enzymes associated with insecticide resistance in Aedes aegypti but also identified novel genomic resistance markers potentially associated with their cis-regulation and modifications of their protein structure conformation. As for gene transcription data, polymorphism patterns were frequently conserved within regions but differed among continents confirming the selection of different resistance factors worldwide. Overall, this study paves the way of the identification of a comprehensive set of genomic markers for monitoring the spatio-temporal dynamics of the variety of insecticide resistance mechanisms in Aedes aegypti.


Assuntos
Aedes/genética , Variações do Número de Cópias de DNA , Genômica , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Nitrilas/metabolismo , Piretrinas/metabolismo , Aedes/efeitos dos fármacos , Aedes/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Inativação Metabólica , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Análise de Sequência de DNA , Análise de Sequência de RNA
18.
Environ Pollut ; 220(Pt A): 242-254, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27667679

RESUMO

Hazard assessment of chemical contaminants often relies on short term or partial life-cycle ecotoxicological tests, while the impact of low dose throughout the entire life cycle of species across multiple generations has been neglected. This study aimed at identifying the individual and population-level consequences of chronic water contamination by environmental concentrations of three organic micropollutants, ibuprofen, bisphenol A and benzo[a]pyrene, on Aedes aegypti mosquito populations in experimental conditions. Life-history assays spanning the full life-cycle of exposed individuals and their progeny associated with population dynamics modelling evidenced life-history traits alterations in unexposed progenies of individuals chronically exposed to 1 µg/L ibuprofen or 0.6 µg/L benzo[a]pyrene. The progeny of individuals exposed to ibuprofen showed an accelerated development while the progeny of individuals exposed to benzo[a]pyrene showed a developmental acceleration associated with an increase in mortality rate during development. These life-history changes due to pollutants exposure resulted in relatively shallow increase of Ae. aegypti asymptotic population growth rate. Multigenerational exposure for six generations revealed an evolution of population response to ibuprofen and benzo[a]pyrene across generations, leading to a loss of previously identified transgenerational effects and to the emergence of a tolerance to the bioinsecticide Bacillus turingiensis israelensis (Bti). This study shed light on the short and long term impact of environmentally relevant doses of ibuprofen and benzo[a]pyrene on Ae. aegypti life-history traits and insecticide tolerance, raising unprecedented perspectives about the influence of surface water pollution on vector-control strategies. Overall, our approach highlights the importance of considering the entire life cycle of organisms, and the necessity to assess the transgenerational effects of pollutants in ecotoxicological studies for ecological risk assessment. Finally, this multi-generational study gives new insight about the influence of surface water pollution on microevolutionary processes.


Assuntos
Aedes/fisiologia , Monitoramento Ambiental , Poluentes Ambientais/toxicidade , Estágios do Ciclo de Vida/efeitos dos fármacos , Aedes/efeitos dos fármacos , Animais , Compostos Benzidrílicos , Benzo(a)pireno/toxicidade , Ecotoxicologia , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Fenóis
19.
Environ Pollut ; 214: 539-548, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27131813

RESUMO

(1)H-HRMAS NMR-based metabolomics was used to better understand the toxic effects on maize root tips of organochlorine pesticides (OCPs), namely lindane (γHCH) and chlordecone (CLD). Maize seedlings were exposed to 2.5 µM γHCH (mimicking basic environmental contaminations) for 7 days and compared to 2.5 µM CLD and 25 µM γHCH for 7 days (mimicking hot spot contaminations). The (1)H-HRMAS NMR-based metabolomic profiles provided details of the changes in carbohydrates, amino acids, tricarboxylic acid (TCA) cycle intermediates and fatty acids with a significant separation between the control and OCP-exposed root tips. First of all, alterations in the balance between glycolysis/gluconeogenesis were observed with sucrose depletion and with dose-dependent fluctuations in glucose content. Secondly, observations indicated that OCPs might inactivate the TCA cycle, with sizeable succinate and fumarate depletion. Thirdly, disturbances in the amino acid composition (GABA, glutamine/glutamate, asparagine, isoleucine) reflected a new distribution of internal nitrogen compounds under OCP stress. Finally, OCP exposure caused an increase in fatty acid content, concomitant with a marked rise in oxidized fatty acids which could indicate failures in cell integrity and vitality. Moreover, the accumulation of asparagine and oxidized fatty acids with the induction of LOX3 transcription levels under OCP exposure highlighted an induction of protein and lipid catabolism. The overall data indicated that the effect of OCPs on primary metabolism could have broader physiological consequences on root development. Therefore, (1)H-HRMAS NMR metabolomics is a sensitive tool for understanding molecular disturbances under OCP exposure and can be used to perform a rapid assessment of phytotoxicity.


Assuntos
Hidrocarbonetos Clorados/toxicidade , Metaboloma/efeitos dos fármacos , Praguicidas/toxicidade , Zea mays/efeitos dos fármacos , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Ácidos Graxos/metabolismo , Hidrocarbonetos Clorados/metabolismo , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Praguicidas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Zea mays/metabolismo
20.
Chemosphere ; 155: 519-527, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27153234

RESUMO

Despite numerous studies suggesting that amphibians are highly sensitive to cumulative anthropogenic stresses, the role played by endocrine disruptors (EDs) in the decline of amphibian populations remains unclear. EDs have been extensively studied in adult amphibians for their capacity to disturb reproduction by interfering with the sexual hormone axis. Here, we studied the in vivo responses of Xenopus tropicalis males exposed to environmentally relevant concentrations of each ED, benzo[a]pyrene (BaP) and triclosan (TCS) alone (10 µg L(-1)) or a mixture of the two (10 µg L(-1) each) over a 24 h exposure period by following the modulation of the transcription of key genes involved in metabolic, sexual and immunity processes and the cellular changes in liver, spleen and testis. BaP, TCS and the mixture of the two all induced a marked metabolic disorder in the liver highlighted by insulin resistance-like and non-alcoholic fatty liver disease (NAFLD)-like phenotypes together with hepatotoxicity due to the impairment of lipid metabolism. For TCS and the mixture, these metabolic disorders were concomitant with modulation of innate immunity. These results confirmed that in addition to the reproductive effects induced by EDs in amphibians, metabolic disorders and immune system disruption should also be considered.


Assuntos
Anti-Infecciosos Locais/toxicidade , Benzo(a)pireno/toxicidade , Disruptores Endócrinos/toxicidade , Imunidade Inata/efeitos dos fármacos , Doenças Metabólicas/induzido quimicamente , Triclosan/toxicidade , Xenopus/crescimento & desenvolvimento , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/imunologia , Masculino , Reprodução/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/imunologia , Testículo/efeitos dos fármacos , Testículo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...